MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Pag	e 2									cher							S	yllab			F	Pap	er	·
							IG	ics	<u>E –</u>	·Ma	y/Ju	ne	2007						062)			3		
An	incorr	ectl	y writ	tte	n s	/mb	ol, e.	g. N	IA o	or Cl	L, sh	oul	d be	pena	lise	ed o	nce	e in t	he pa	aper.					
1	(a)	(i)	coal NOT						I																[1]
	(ii)	natui refine		-		meth	nan	e or	r pro	opane	e o i	r but	ane o	r	petr	role	um	gase	es o	r	calor	ga	as	or [1]
	(b) ((i)	petro parat diese aviat fuel o heav heati Any	iffir el tior oil /y	n o i n fu fue g oi	· ker el o oil	osen																		[2]
			NÓT			med	alka	ne e	e.g.	octa	ane														
	(ii)	waxe Any [']			-					•			or bit istillat			•		. ,	or n	ap	ohtha			[2]
	(i	ii)	(liqui	id)	air	or e	ethan	ol a	ind v	wate	ər or	alk	enes	(mad	de	by	ý	crac	king)	or		Noble	. (Ga	ses [1]
																							[To	tal	: 7]
2		ed e	examp T corr			•		ו ch	lori	de															[1] [1]
			silico oolym	•							licon	oxi	de												[1]
	elect good		s [1]	ar	nd <u>p</u>	osit	ive io	ons	[1]																[2] [1]
																							[To	tal	: 6]
3		(i)	meth sulph zinc	hu	ric									+ wa	ter										[1] [1] [1]
	(ii)	meth hydro KOH	ос	hlo			CI	+	H₂O	1														[1] [1] [1]
	(i	ii)	meth potas Pb ²⁺ Not b	ss +	ium 2	- =	Pbl_2	ac	cep	t a c	corre	ct e	quat	on e\ []	/en	ı if s	olu	ble i	odide	e is w	ro	ng			[1] [1] [2]
																						r1	[ot:	۰Ie	101

 4 (a) (i) BaO (ii) B₂O₃ (b) (i) S²⁻ (ii) Ga³⁺ (c) NCl₃ COND & (1) geometry (1) geomet	Page	e 3	Mark Scheme	Syllabus	Paper
 (ii) B₂O₃ (b) (i) S² (i) Ga³⁺ (c) NCl₃ (c) NCl₃ (c) NCl₃ (d) (i) ignore a correct chemical property in (i) vanadium harder vanadium higher melting point or boiling point vanadium higher density ANY TWO ANY TWO (ii) ignore a correct physical property in (ii) potassium more reactive or example of different reactivities-potassium reacts with cold water, vanadium does not. potassium one oxidation state, vanadium does not. potassium one oxidation state, vanadium does not. potassium economication economicate economication economicat			IGCSE – May/June 2007	0620	3
 (b) (i) S²⁻ (i) Ga³⁺ (c) NCl₃ (c) NCl₃ (d) (i) ignore a correct chemical property in (i) vanadium harder vanadium higher melting point or boiling point vanadium higher melting point or boiling point vanadium higher density ANY TWO OR corresponding statements for potassium NB has to be comparison (ii) ignore a correct physical property in (ii) potassium more reactive or example of different reactivities-potassium more reactive or example of different reactivities-potassium one ovidation state, vanadium more than one vanadium and its compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium ANY TWO NB has to be comment about both elements (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	4 (a) ((i) Ba	aO		[1]
 (ii) Ga³⁺ (c) NCl₃ (c) NCl₃ (c) NCl₃ (d) (i) ignore a correct chemical property in (i) vanadium harder vanadium higher melting point or boiling point vanadium higher density ANY TWO OR corresponding statements for potassium NB has to be comparison (ii) ignore a correct physical property in (ii) potassium nee cactis with cold water, vanadium more than one vanadium one oxidation state, vanadium more than one vanadium and its compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium ANY TWO NB has to be comment about both elements (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	(i	ii) B ₂	₂ O ₃		[1]
 (c) NCl₃ COND & (1bp and 3nbp) around each chlorine & (3bp and 1nbp) around nitrogen (d) (i) ignore a correct chemical property in (i) vanadium harder vanadium higher melting point or boiling point vanadium higher density ANY TWO OR corresponding statements for potassium NB has to be comparison (ii) ignore a correct physical property in (ii) potassium more reactive or example of different reactivities- potassium more reactive or example of different reactivities- potassium one oxidation state, vanadium more than one vanadium and its compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium ANY TWO NB has to be comment about both elements (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	(b) ((i) S ²	2-		[1]
 COND & (1bp and 3nbp) around each chlorine & (3bp and 1nbp) around nitrogen (d) (i) ignore a correct chemical property in (i) vanadium harder vanadium higher melting point or boiling point vanadium higher density ANY TWO OR corresponding statements for potassium NB has to be comparison (ii) ignore a correct physical property in (ii) potassium more reactive or example of different reactivities-potassium more reactive or example or colourless vanadium coloured compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium ANY TWO NB has to be comment about both elements (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	(i	ii) Ga	a ³⁺		[1]
 vanadium harder vanadium higher melting point or boiling point vanadium higher density ANY TWO OR corresponding statements for potassium NB has to be comparison (ii) ignore a correct physical property in (ii) potassium more reactive or example of different reactivities- potassium reacts with cold water, vanadium does not. potassium one oxidation state, vanadium more than one vanadium coloured compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	• •				[1] [1] [1]
 potassium more reactive or example of different reactivities-potassium reacts with cold water, vanadium does not. potassium one oxidation state, vanadium more than one vanadium coloured compounds, potassium white or colourless vanadium and its compounds catalysts, not potassium ANY TWO NB has to be comment about both elements (e) (i) fluorine gas astatine solid (ii) both have valency of one both can react with other elements to form halides 	(d) (va va va Va O	anadium harder anadium higher melting point or boiling point anadium higher density NY TWO DR corresponding statements for potassium		[2]
(ii) both have valency of one both can react with other elements to form halides	(i	pc pc pc va va Va A	otassium more reactive or example of different reactive otassium reacts with cold water, vanadium does not. otassium one oxidation state, vanadium more than or anadium coloured compounds, potassium white or co anadium and its compounds catalysts, not potassium NY TWO	ne blourless	[2]
both can react with other elements to form halides	(e) ([1] [1]
or any correct Chemistry – they both form acidic hydrides both have diatomic molecules both accept one electron or form ion X ⁻ both have seven valency electrons both react with non-metals to form covalent compounds both react with metals to form ionic compounds both form acidic oxides	(i	bc bc or bc bc bc bc bc bc	oth can react with other elements to form halides oth are oxidants r any correct Chemistry – they both form acidic hydrid oth have diatomic molecules oth accept one electron or form ion X ⁻ oth have seven valency electrons oth react with non-metals to form covalent compound oth react with metals to form ionic compounds oth form acidic oxides		
NOT have a valency of 7 ANY TWO					[2]
[Total: 1					[Total: 15]

	Page 4	L I	Syllabus	Paper				
			IGCSE – May/June 2007	0620	3			
5	(a) (i)	air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert						
	(ii)	any	metal higher than magnesium in reactivity series		[1]			
	(iii)		water (to dissolve salt) or centrifuge		[1] [1]			
	(b) (i)	elect	tron loss		[1]			
	(ii)	hydr	ogen		[1]			
	(iii)	oxyg chloi			[1] [1]			
	(iv)		nnot lose electrons (because) ceives electrons (from the battery)		[1] [1]			
			reduction occurs at the cathode ation at the anode (not cathode)		[1] [1]			
			electrons are "pushed" to rig enting it from being oxidised		[1] [1]			
		for c	omments of the type – rusting needs oxygen, it is fo	ormed on titanium	not iron ONLY [1]			
		ΝΟΤ	the idea that titanium is more reactive etc		[']			
	(v)	does cath	1 ificial protection is a cell not need electricity odic protection is electrolysis odic protection needs electricity					
		this i cath	2 ificial protection needs a more reactive metal (in cor metal corrodes instead of steel odic protection needs an inert electrode accept unr lectrode					
		has	to be ONE comment from each set comments about oxide layers and coating are neutral	I	[2]			

[Total: 12]

	Page 5			Mark Scheme	Syllabus	Pap	er				
				IGCSE – May/June 2007	0620	3					
6	(a)	sod iror	alumina or aluminium oxide codium aluminate ron(III) oxide iltration or centrifuge NOT conditional								
	(b)	<u>car</u> 900 alui	<u>bon</u> c	to right: athode or <u>carbon</u> negative electrode 000°C m			[1] [1] [1] [1]				
	(c)	(i)	not b	+ 3e = A <i>l</i> palanced [1] [aq) = 0			[2]				
		(ii)		gen is formed NOT oxide ts with carbon anode			[1] [1]				
	(d)	(i)	acce	density or light or resistant to corrosion ept strength/weight ratio or alloys are strong ng on its own is neutral			[1]				
		(ii)	oxid easi	attacked or corroded or unreactive e layer ly shaped or malleable or ductile TWO			[2]				
		(iii)	NOT	trength or so it does not break or does not sag or can steel is a better conductor aluminium protects steel from rusting	have pylor	ns further	apart [1]				

[Total: 16]

	Page 6								
				IGCSE – May/June 2007	0620	3			
7	()			er needed but if one is given it has to be 1					
				ll formula (all bonds shown) OH NOT –HO		[1]			
		stru acc no	ept – conse	acid Il formula (all bonds shown) OH NOT –HO eq marking ds are not shown (CH ₃ –CH ₂ –), penalise once		[1] [1]			
	(b)	(i)	 must have correct ester linkage COND continuation and a group on either side of the ester group Accept –COO– 						
		(ii)		ept any sensible suggestion es, clothing, bottles, packaging, bags		[1]			
	(c)	(i)	8			[1]			
	(ii) (iii)		CON C ₂ H,	ole bond becomes single and 4 bonds per carbon at ND a bromine atom on each carbon ₄ Br ₂ ONLY [1] ept a structural formula with hydrogen atoms	om	[1] [1]			
			corn	oil		[1]			
	(d)	884 Iimi	g of f t 762			[1]			
				e of fat reacts with 762/254 moles of iodine molecule e of fat reacts with 3 moles of iodine molecules	es	[1]			
		limi	t 6	of double bonds in one molecule of fat is 3 Jential marking allowed provided the number of dou	ble bonds is an inte	[1] eger.			

[Total: 14]